Combined inhibition of epidermal growth factor receptor and JAK/STAT pathways results in greater growth inhibition in vitro than single agent therapy.

نویسندگان

  • Afshin Dowlati
  • David Nethery
  • Jeffrey A Kern
چکیده

Epidermal growth factor receptor (EGFR) inhibition with small molecule tyrosine kinase inhibitors results in antitumor activity in only a minority of patients whose tumors express EGFR. One hypothesis to explain this suboptimal clinical activity is that multiple growth regulatory pathways are abnormal in most EGFR-expressing cancers. Given the importance of Stat-3 signaling pathway in epidermoid tumors, we hypothesized that blocking complementary pathways in an epidermal growth factor (EGF)-driven model of proliferation in the A431 cell line would demonstrate improved antiproliferative activity. Exposure of A431 cells to the EGF results in a significant increase in EGFR and Stat-3 phosphorylation. However, inhibition of EGFR by AG1478 fails to decrease EGF-induced Stat-3 phosphorylation. This suggests that EGF continues to drive Stat-3 phosphorylation through other receptors. Our study suggests that residual ErbB2 activation by EGF, despite EGFR blockade, is responsible for persistent downstream activation of Stat-3. In this setting, combined exposure to an EGFR blocker and Stat-3 blocker (AG490) results in significantly greater tumor growth inhibition than either agent alone. We conclude that targeting multiple pathways (EGFR and JAK/STAT pathways) in EGF-driven tumors may result in greater antiproliferative activity than blocking EGFR alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of epidermal growth factor receptor status in glioblastomas

Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the ...

متن کامل

Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition.

Malignant gliomas are highly lethal tumors that display striking genetic heterogeneity. Novel therapies that inhibit a single molecular target may slow tumor progression, but tumors are likely not dependent on a signal transduction pathway. Rather, malignant gliomas exhibit sustained mitogenesis and cell growth mediated in part through the effects of receptor tyrosine kinases and the mammalian ...

متن کامل

Effect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.

Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...

متن کامل

Synergistic apoptosis in head and neck squamous cell carcinoma cells by co-inhibition of insulin-like growth factor-1 receptor signaling and compensatory signaling pathways.

BACKGROUND In head and neck squamous cell carcinoma (HNSCC), resistance to single-agent targeted therapy may be overcome by co-targeting of compensatory signaling pathways. METHODS A targeted drug screen with 120 combinations was used on 9 HNSCC cell lines. RESULTS Multiple novel drug combinations demonstrated synergistic growth inhibition. Combining the insulin-like growth factor-1 recepto...

متن کامل

JAK-STAT pathway and JAK inhibitors: a primer for dermatologists

Background: All cellular events depend upon the DNA synthesis and gene expression involving complex interplay between ligands such as interleukins and interferons, with various cell membrane receptors. These ligand-receptors interactions transmit signals within the cell via numerous signal transduction pathways to affect gene expression. Janus kinase/signal transducer and activator of transcrip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2004